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1. INTRODUCTION

The basic problem of periodic interpolation can be explained as
follows:

- given a finite set of distinct points £, , ... :t;v of the

interval [O,-?-TT) and a set of real scalars y, .. Y

- construct a £T - periodic function s belonging to the linear

variety \/N of all interpolants of a suitable space ¥

Vo= [Ee®|f06)= y k=", N (1)

For practically relevant candidates of solution additional information is
clearly needed, in particular polynomial precision and smoothness. This
essentially amounts to restricting the set of 2 - interpolants by
constraints involving a suitable "energy" norm.

In this connection a quadratic (semi-) norm generated by the integral

ar
2 /71
{12, #0601 axf 1.2)
[+]
has proved most efficient, where the differential operator
), L), 42 Ay 2
D, = (%) +0)((o(x) ”) ((dx> m (1.3)
, annihilates all trigosometric oolynomials
.
S(X) = Y: (ah cos (Rx) + blQ Sin(b”),) [1.4)
.= O

| y



— | |

of order m.

A proper setting for the problem of minimizing the (quadratic)
functional (1.2) under interpolatory constraints is provided by the
class = KXV, aw] of 2T - periodic functions, whose
(distributional) derivatives up to the (2m + 2) -th order are square-
integrable on the interval [0, 27] .

The solution s of the minimization problem

ar 2/1'
(1D, s6of*dx = inf [ (D, #0a1* dx (1.5)
° f€vp °

. . . (Zrm+ 2}
is called (optimal) trigonometric spline interpolant in & Y [0,277]~

The trigonometric spline interpolant is essentially given by the
following properties (cf. Schoenberg (1964)):

(i) s s 4% - periodic and continuous

(ii) s s infinitely differentiable for all points € € (o0, 2w)
t # T, , R= A N ywith DI s(= =0
i.e.: s reduces to a trigonometric polynomial of order m for
all points ¢t € [0,27) with € # ¢, &=, N

1

(1i4) S€) = Y, for R = A ... n.

Spline interpolation turns out to be a most adaptable method to
data for (giobal) interpolation, and the (semi-) norm (1.2) is a natural
setting to maintain tne flexibility of ptecewise trigonometric polynomials
wnile at the same time achieving some degree of global smoothness. Of
particular usetulness is the spline interpolant corresponding to the
auadratic integral mean of the {linearized) curvature ("/dx)*f




(1.6)

/

2
/ | 2, .f-’(x)/" a x

since the quantity (1.6) may be physically interpreted as the potential
energy of a{statically deflected)thin beam (which indeed is proportional
to the integral of the square of the (linearized) curvature of the
elastica of the beam) (cf. Moritz (1978)).

Trigoniometric splines may be interpreted as the spline functions
for the (unit) circle, i.e. trigonometric splines are the two-dimensional
analogues of the spherical splines discussed in this paper.

Roughly speaking, the spherical interpolation problem to be of
importance for geodetically relevant purposes can be formulated as follows:

- given a finite set of distinct points (stations) 7, s Za Of
the (unit) sphere S¢  and a set Yoo, ~ ., Y, of real scalars
(observations or measurements)

- find a (smooth) function s : Q — R belonging to
the linear variety of all interpolants of a suitable space #

Vo = [#e®if) =y k=4 .. Nj. (13

In order %o achieve unigueness it likewise seems quite natural to look for

an interpolant minimizing an appropriate quadratic norm in such a way that
additional assumptions concerning polynomial precisicn and smoothness
again are satisfied. This can be done in the same way as in the trigono-
netric case by using a differentiai coperator annihilating all polynomials,
i.e. spherical harmonics of order m or less. Observing the fact that the

L i




spherical harmonics S,L of order n are the everywhere on the (unit)
sphere regular eigenfunctions of the Beltrami operator A® corresponding

to the eigenvalues A, = n (m +4), i.e. 1

(a7 +2.) S, (§) =0 (1.8)

on the unit sphere $¢ for all spherical harmonics S, of order n, the
(simplest) operator playing the same role as the operator (1.3) is given by
the product

(4%) = (A%2)(A%+)) ... (4% +1,). (1.9)

A proper setting for optimal spherical interpolation is provided by the
(Sobolev) space K = H ™*¥(G2) of functions whose (Beltrami)
derivatives up to  (A%) £ (in the distributional sense) are square-
integrabie on the sphere S§2 (cf. Chapt. 8). Equipped with the (semi-)

norm §-8_ =/< >, generated by

> = - 2 1.10)
<ot = LG, HEN do (110
(I +2)
the linear space X { Q) is a {semi-) Hilbert function
space of continuous functions on the (unit) sphere & . Therefore. in

comparison with (1.5), the(optimal) spherical interpolation problem to
be analyzed in this paper can be formulated as follows:

- find a function s & V, such that
figs)_sei*aw =« (1) fifde .
S’ fe vy, R
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As described in detail the variational problem (1.11) is well-posed in
the sense that its solution exists, is unique, and depends continuously on
the data y, , ..., y, . Basic tool is the theory of Green's functions
of the sphere with respect to the operator (1.9).

The spherical spline interpolant is essentially given by the following
properties:

(i) s 1is continuous on 9

(ii} s 1is infinitely differentiable for all points v € «52, P # 7,
L o= a4, ..., N o with (A% + 2 )Y L L L (A%+a Vsl =0, ...
s reduces to a polynomial of order = mt for al)

points v € 52 with v #* 7, &= 4,... 7

(111) S(7.) = Y for  R= A, N

Spherical spline functions (s.s.f.) have the foilowing attractive
features:

The linear space of all s.s.f. {of order m) is finite dimensional;
s.s.f. are relatively easy to manipulate and compute; various matrices
arising in interpolation and approximation problems are nonsingular,
s.s.f. do not tend to produce aporoximations having severe oscillations
and undulations.

Thus s.s.f. seem to be best suited for macro - and micro modeling of
earth's gravitational field. Moreover, a variety of problems of "optimal”
integration on the sphere leads tc spherical spline functions. In
addition, the whole solution process can be made surprisingly simple and
efficient for numerical computation. Indeed, the computational scheme for

solving the interpolation problem can be described in a recursive form
based on a combination of generalized Lagrange and Newten formula. This
means that the method is constructed so as to have the so - calied
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permanence property: the transition from the solution with respect to
N data to the solution with respect to (N + 1) - data necessitates merely
the addition of one more term, all the terms obtained formerly remaining

unchanged.

The price to be paid for the convenience of the permanence property
is a biorthonormalization process.




2. DEFINITIONS AND NOTATIONS

3
TR~ denotes the three-dimensional real Euclidean space. We consistently

write x ,y,2,... for the elements of R,
R . /2.3
let e, ,e, , €, De the cancnical (orthonormal) basis in /
{4 @] [
e, = {O\ , e‘,_ = (4) / €, = (O} . (2.1)
lo) o 1

In components we have for elements x gz e RS

X = X, e, + X €, * Xje,
z (2.2)
= 2, e4 + Z‘z el hd 23 e3 .
The inner product of x K6 2 e ® is the number
x 2 = X2 - x e, o+ X E, (2.3)
- 3 . .
the norm of x & '~ is the (nonnegative) number

bx) = Yxox . (2.4)

=~ 3 L ..
For all elements X € 7? , different from the origin, we have the
representation

x=r§’ T o= ixio= Y X e xS X (2.5)

where 5 is the uniquely determined directional unit vector of the

element x e IR3.

The unit sphere in R will be called .o

SZ will be denoted by & :

The total surface of

<




> = fdw = %7, (dw: surface element).
S

i
1
The rectanqular coordinates (2.1) are related to the polar coordinates (2.5) !
by the equations f
L

|
x=T € | € =te + /-t (amgersings,l , }

t = cosD 0679*57/’/0550<277‘, i

i.e. {
{

x, = + J4-+¢% cos @ E

X, = v /A& sn@ (2.7) g

Xy = ¢ §

!

¢

(% : polar distance, @ : geocentric longitude). In terms of the cocrdinates
(2.6) the Laplace - operator

e

L N 2\
Ax = (ﬂﬂ) + (’ax,j * (ﬁ_x;) (2.8)
takes tne form
D \2 i - JN
s, = (%) 22 54 (2.9

a*° denotes the (Laplace - ) Beltrami - operator of the unit Sphere

- ) [N L e 2 A 22
Ag - (1-) (F) -2t %k T (aﬂ (2.10)
= ay 2 1 2 % ﬂ
- e (- 5% *,,_4(97;/ ©




3. SPHERICAL HARMONICS

The (Laplace -) spherical harmonics S, of order n are defined as the
everywhere on the unit sphere 2 infinitely differentiable eigenfunctions
of the Beltrami differential equation

(4 + Ap) Sa(€) =0 (3.1)
corresponding to the eigenvalues

A = n (n+4) . (3.2)

n
The set of all eigenvalues is the spectrum
S(82) = {Arz =n(n+4)) n=0,4,...}, (3.3) |
As is well-known, the functions H_ given by
Hy (<) = % S, (€)  w=Ixl  £e8&, (3.4

are polynomials in rectangular coordinates which satisfy the Laplace
equation

Ax Hn (x) = 0 (3.5)
and are homogeneous of degree n. Conversely, every homogeneous harmonic
polynomial of degree n restricted to the unit sphere £ is a spherical

harmonic of order n.

The Legendre polynomials Ei given by

C"/l.] 1
2 (t) = Z-_ (_4}5 n(ln—.Zs). +,,-,zs (3.6
" s=o 2" (n-2s)! (n-s)!s!
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are the only everywhere on the intervai [-4, 4] infinitely differentiable

eigenfunctions of the Legendre differential equation

[ (- g + 2] R@ =0, telnd, (.

which in € = 4 satisfy R (1) = 1

Apart from a constant factor, the Legendre polynomials are the only
spherical harmonics, which are invariant under orthogonal transformations
with the "north-pole" e, as fixed point.

0
Spherical harmonics of different order are orthogonal in the sense
of the &% - inner product
(Sn: Sm) = fsn(g) Sm(g)dw = O . (3.8)
Y/
(n # m)
The linear space :{1 of all spherical harmonics of order n has the
dimension
dim (£,) = <nrn+ 1. (3.9)
In other words, there must be <n + 4 linearly independent spherical
harmonics
Sr\',‘ { : ‘ . ’ Sﬂ(ln*z’ : (3.10“
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We assume this system to be orthonormalized in the sense of the z* -inner

product

(Sﬂ,jl Sm,h.) = S"l} (g) S“".ﬁ {g) do (3.11)

[
ks
d,

G

-y

( dy,.: Kronecker symbol)
?" denotes the linear space of all functions in three variables which
restricted to the unit sphere \Y/ may be represented by homogeneous poly-
nomials of degree m or Tess. pm admits the orthogonal decompasition

‘7:)“ = ‘f & .. B fm
with respect to the Efz-inner product, i.e. to every S € pm there
exist spherical harmonics S, , . . . , S, with
"
S = -8, ., (S, §) =0 - (3.12)

(n £4 Oéd;/”"m)

Hence, the dimension of ais equal to

m
Mo dem(B,) = I e = (et (3.13)

n=o

D]

For any two elements f,7652 , the sum
ane.s
T (%,0) = 2 S . (€) S, (9

J=1

is invariant under all orthogonal transformations A, i.e.:

&

(%,7) = %A%, Ap)

(3.14)
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for all orthogonal transformations A. Ffor fixed % ¢ §& . % (%,4)
is as function of » a spherical harmonic of order n. %, (¢, 7) is
symmetric in ; , %7 and depenas only on the scalar product of § and ¥
Thus it is clear from the above that we have, apart from a multiplicative
constant o .,

2+ 1

]

In order to determine &, we set ? 7 - Then we obtain

n+a

o USa ) = e, B) = . (3.16)
=
Integration over ..Q yields
dn+ A = ¥T . (2.17)
Therefore we find the addition theorem
dres - -2'24-4 —
2o S (8) Sep (D) = T RSy (.18

in particular, we have

m 2neq

t Z Su,é (€) \S‘H,é (‘7) = g— paiads 2/52) {3.19}

nso J‘-4

[
tet ¢ be an absolutely integrable function on the intervai [--, 4],

ie: ¢ € L'[-44] Then, for every S, & # . Hecke's formula
(cf. Muller {1966), Freeaen {1979)) gives

r

——~
L0
~—

M $(€7) S, (g) daly) = s, Sp (8], 20




where

S, =AT J ¢ (+) R(¢) dt.

(3.21)

The notation dw(z) means the surface element &w>r is applied to the i
variable.

Hecke's formula establishes the close connection between the orthogonal

invariance of the sphere and the addition theorem.




e
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4. FUNDAMENTAL SYSTEMS

Unfortunately, the system of spherical harmonics

S°.4 1Tt S".4 pet sﬂ."""' T 5”‘.* PO T, amen {4.1)

is not unisolvent on the unit sphere $2 , 1.e. the matrix

N

/50.4 (?‘) . . . 50,4 ( 7'\1)

/ SA,»\ (74) o e s 54‘4 (7M)

/ Sus (7,) . Suz (74) \

P . }

| Smatz) . Sen (2n) (4.2)
\\ Sm,zmu (74) - Smlzmn (7~)
\

is not non-degenerate for all choices of M distinct points % ..., 7 o
iying on $2 . This is known from Haar's theorem (cf. Davis {1963) Theorem
2.41)). However, it is easy to prove that there exist systems of points
,,---, % having a non-degenerate matrix (4.2). For, it is certainly
possible to find a point 7 with So, (7,) # O . We consider the

determinant
SO.4 (?‘) Sol‘(€>\

det |
Soa (1) Sue L8))f (4.3)

As a function of § , this determinant cannot be identically 0, for else
S.,» and S would be iinearly dependent. Therefore there is a
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point », such that
So,s (7,) Saa (7,)
| 0,1 " QA
| det : + 0. (4.4)
S"l4 ( 74) SA,A (7&)/
In the same way we discuss the determinant

S°.4 (?4) S°»-v /?:.) SO,« (g)

det S () S (1) S., (8) (4.5)

44

Swe (7)) Sz (9) S, (%)

and by the same arguments there exists a point E? = 73

for which (4.5)
is different from zero.

Therefore, by induction, we can find a system
of points » ,.., 7, such that the matrix (4.2) is non-degenerate.

Aset y,,..., 7, of 1 = (m+4)* points of the unit sphere S§¢
is called fundamental system of order m on §2 , if the rank of the (M,M)
- matrix

S,. (7)) ... Soa (7,) \\

S"M (74) v T SAM (TM} \

R
]

™ 54,3 (7,,) LA 54,3 (7H) \

]
\
S-ﬁn,»\ (74) L S”:,A (7M) }

. : /
Sm',_m" (7‘) o o o Sm'lmoa (?H)/

is equal to M.
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Aset v ,..., 7,00 NzM= (m.+4)2' (distinct) points of the

unit sphere §2 is called admissible system of order m on £ , if the
rank of the (M,N) - matrix

{
Se,a (1,) o S°.4 ( 7~) .
Sﬂm (70 S 54,4 ( Pn)
x’ = Sua (2,) -t 54:3 () l (4.7) \g
Sm.q (7,1) < e s"':“ (YN) ’
Sm,1n+4 (7,,) s " SM,J‘"*" (7/\()

is equal to M.

NOTE: In the sequel we assume that each admissible system 2,01 Ty
of order m has as subset the fundamental system 4
order m (consisting of the first M elements
is always achievable by reordering.

,...,7,.'01‘
P, - - - :7/4)' This

e v - T AR S -

Given a function S € -pm of the (general) form

m 2n+q

S(8) = 2 2 ¢, S. (8.

(4.8)
n=o0 J""
For an admissible system ¢, . .. 7, of order mon $¢ , the
linear equations
N
Z Ok S",)('Zk) = C“‘,J'
k=4
(4.9)
(nso, AW J—-—- 4, .. .,.2n+4)
are solvabie in the unknowns a, , ..., a . Thus, for every admissible
system w7 ... g, of order mon $Z and all solutions a a, cf

4 ¢ T TN
the Tinear equaticns (4.9) the element S € \p,n of the form (4.3}

can be expressed as follows:




M Insa

N
S(g) = > a2 > S, (4)S.;(€). (4.10)

kw4 n=0 J =

Using the addition theorem we obtain

~N e
5( ) - 2+ .
g 2-:4 Qy 2-—; SR (€0, (4.11)
But this means that the N functions given by
— L+ 1
'g [’ /1 p"l ({. 74)
(4.12)
— 4
A
I HE O R(fy)
span the space JOM :
2 S
—_ n+ A
G = oeen (UL 82 R, ) ww
0
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5. GREEN'S FUNCTIONS

We next define the Green function of the unit sphere 52 with respect
to an operator A%+ A, A, € S(82) (cf. Freeden (1978/1973))
This function will be of great importance for the definition and the
appiication of spherical spline functions.

We begin our considerations by introducing the definition:

A function (An,; €,v) is called Green's function of
the unit sphere with respect to the operator A* + A, and

the parameter geQ if it satisfies the following properties:
(i) Y(A,; & 9) is as function of & , for fixed E , infinitely
differentiable for all 4 € S with 7 # & (differentiability,.

(i1) For all » e3¢ with y # &
(A% +A,) § (A € y) = (2n+4) B2

{differential equation).

(111} For all » € S2 ,
§ 0, g0+ Hog (1= €

is continuously differentiable for all 4 € 3:2 {characteristic
singularity).

(iv) For all orthogonal transformations A

2 O, A%, A7) = G On 50y

{rotational symmetry).

/) L i &
{v \Sg -\7(,\n/.f'7) );7: (5.7) dw(7) - 0

uniformly with respect to all § & S

(normaiization;.
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We first prove the uniqueness of Green's function ?(/‘n; €.v):
Denote by D (A, ¢,%) the difference of two Green’s functions satisfying
the properties (i) - (v). Then we have
(i)’ DA €,%9) is as function of ¥ , for fixed &£ € $e
infinitely differentiable for all » e S2 with v+ €.

!
|
|
!
!

(ii)'For all v € $C with v # g
(A‘z""An) D(f\n,' ;/7) = o .

(i1i)'For all v € Q > D(/\,,l’. f,y)is continuously differentiable.

(iv)'For all transformations A

D(’\n/'Ag’fA?) = :D(’\njlf/?)

(v)" Szf:D(A"" £,9) B(€y) doty) = O
uniformly with respect to all ¥ € Y’

The properties (i)' - (iii)’ show that D (A, ¥,7)is an everywhere on
the unit sphere $2 infinitely differentiable function satisfying the
differential equation (ii)'. Therefore 3()\,” €,7} must be a spherical
harmonic of order n. Because of the property (iv)', DA, ; €/7) depends

only on the scalar product §’ 7 . Conseguently, we have
;D(/\"U ;I?) = (}/n pn(??)-
From (v)' we deduce that Y,, = O . But this means that Green's function

~§, (Mo, &/ ¥) of the unit sphere S with respect to the operator
A® + A, and the parameter £€& 5L is uniquely determined by the
defining properties (i) - (v). _

Following Hilbert's approach to the theory of Green's functions {cf.

Hilbert (1912)) we orove the existence of ¥ (A, , £, 2) by first
giving an explicit representation of Green's function to the operator A

|
!
!
i
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An easy calculation shows that

—,&9? (A-F-5) -1 + &%2
satisfies all the defining properties (i) - (v} of Green's function with
respect to A" . Hence,by virtue of the uniqueness, we have

610, 8,y) =~ Lg(A-Ey) -1 + bg 2. (5.1)

In order to assure the existence of ‘? (A é’,;) . A, ¥ O
we consider the inteqral equation

Clan, €, 7 = $(°, 5.7 (5.2)
A : )
+ __4;5{ ‘?Un;é’, ¢) ;xo, 2,8) dolE)
_ a L+ A
An /\n Pn(f.?)/

which establishes the close relation between Green's function § (4w, #) and
the resoivent of the kernel G (O, ¢ »). It is not difficult
to see that

{ 5{0,- £, ) S,t(g) dw(y)
R4

—
[Sa]
(¥%)

—~—

S5 s B RS e

"

for a1l spherical harmonics S, € f; of order > Q0. Tne integral eguation

(£.2) therefore has a solution which is uniquely determined by the conditiors

7{ “5(/\,,/. £,9) S, lp} da () = O (5.4)
St




forall S € 7,

”

Observing the characteristic singularity of Green's function w
obtain applying Green's (surface) identity

Me = An
_b—‘f:r__- S{ g[An/' 517)5"(7)6{&3(7):(/’—4‘&*4) Sn(?)

C

e

. (5.5)

Thus the spherical harmonics of order n, i.e. the eigenfunctions Sn of

the Beltrami - operator A" with respect to the eigenvalues A, =
are eigenfunctions of Green's (kernel) function % (An, E,9)
sense of the integral equation (5.5). Furthermore, if Z,» &€ JC

(vt a)

in the

with - 4 < £.» < 4 , the kernel G (A, . £, ) allows the bilinear

expansion

2REq

_ ST g
'§(/\n; £ 7)) = 2 7: Z Sh'}(g) Sb,;(Z)-
oy =1

k=0 Ah"

(5.6)

The symbol Z. denotes that the sum 1is to be extended over all nonnegative

integers & with A, £ A

—
~d

Using the addition theorem we can rewrite the bilinear expansion of

f(,{n/‘ £, 7) in the form

o

1?“ﬂ; ;17) = Z‘ 2821 /’2 (f?)

keo Alz’Arr_

According to the classical Fredholm - Hilbert theory of linear

inteqral equations (cf. Hilbert (1912)) we define iterated Green's functions

by the following convolutions
\ff’(")'o, rAm, §}/7>

= ; 3‘(%,.”,),“_4/ £,¢) ;‘/Am, g,9) o (¥)

—re (M"—‘ /,2

(5.2)




22

‘;('\o,---, AM; ‘?1 7) is callea areen's function of the unit
. - = [A® ‘el
sphere with respect to the operator (A%), = {A%+Xo)... (47 +An)

In analogy to techniques known in potential theory it can be shown
that, for integers m 2 4 , 4 (A, A, ;%) is continuous on the
wnole sphere S$¢ as function of V4 with £ fixed or as funttron cf 13

with 4 fixed.

On the other nand, the bilinear expansion of yuo,m, Ao, € 7),

m A,

" — 2k+ 4
(¢ ? . 5.9
ﬂ) hg-u (’\h."f\o)“- (’\h"\'“) R {F Z) ( )

js absolutely and uniformly convergent both in f and & respectively
and uniformly in f and 7 together. Thus the representation theorem of

{(qeneralized) Fourier theory yields

_ - — 2L+4 p .
¢ layces Ay $17) = (47) k§4 By O B (). (510}

Let m be an integer with me22. Then the derivative

(A. “'/‘\o) ( A‘*’\M-L) 50\"/"")”‘/ ;/ 7) (5.11}

isas function of 4 for fixed E’ , a continuous function on the unit sphere.
For integers m3x1, the derivative

/A'+)\°) .. (.A."'/\m-«) g('\o:--'/'lm; ;/7)‘ (
5.1}

pcssessesas function of 4 logarithmic singu]érity in feﬂ . Furthermorce,

for elements 76-32 with Z # ,‘;’ and integers mz 2 1,
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3 ( W\) (Q[ t
‘(A .')\A s o A +A /\ A

(5.13)

- i Qk+4 7_2 (f?)]
= (- ¢m)” [‘g(f‘ol- §’,7)

k=1 /\&"‘ ’\O
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6. INTEGRAL FORMULAS

Let & be a fixed point of the unit sphere $¢ . 1f now £ is a
function with continuous second derivatives on §¢, tnen for each sufficiently
smatll P> O Green's surface identity gives

'f_fmf {;(A,,, F,z)[A; £ - £05) [AZ' £, ;:,;)]} da(y)  (6.1)
lgt = 1

{g0us L& 0] - pold §0u s
ig-l=f

lz|=4

. 3 ) . .
Herein ds is the line element in r , while n is the unit vector,
normal to the curve [§-n[= p on L, tangential to 2 and
directed exterior to the set of ai? v € 52 with [§ ~ Z’ ;_p .

In identity (6.1) we first observe the differential equation of Green's

function
; /
[t [8 300,500t = [ frpdet). (52

I§-712p (f-7i2P

ipt =1 lzl=4
in polar coordinates (2.6) the line element for | g - Z[ = P can be
expressed by

2 . T 2 g - £%) At
as (y) Tt at” + ) ¢,
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Therefore, by virtue of the logarithmic singularity of Green’s function

‘o-f (AQ/. £, ») . ve get in analogy to the well-known consider-
ations of potential theory, on passing to the 1imit jO - O the theorem:

Let £ e a fixed point of the unit sphere S& . Suppose that
f Js a twice continuously differentiable function on Q . Then

208) = = [ £l dosy) (6.3
S
P »
- r f ‘?(O/ f/?)[Az %/Z)]d""/Z)

3
This formula compares the functional value of a function § € C ¢ 5))
at g € S¢ with the mean (integrai) value of £  on the unit
sphere S

By use of Green’s function ¥ /4o, A, ¥,7)  with
v
respect to the operator (A% +A,)( A +/\1) we are able to generalize

the integral formula (6.3).

Observing the recursion property

(A% +A) 5064, £, 7) (6.4"

3
= (- 47) [g(/\o; £,2) - ;:_:-:o ?(?-?):)
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|

we abtain

Szf g (’\o; ¥, 7) [(42+/\°)f(7)j dw (Z) (6.5)

--Z 5{ (224, § (Ao, A, ) [(85 +4.) £05] daty)

v [ 3

kv) A, ?/;7)[(A; +’\o)f/22] da/;}-

Integration by parts, i.e. application of Green's identity yields for
a function 4 e C(SV)

-2 S{ (85+2) §0ud; %ig) [a7+ 3 £1p] day)

- -1 Sg G (Ao A, f,;)[(A;+,\,)(A;+,\4\f(z)] doty).

in tne same way, by integration by parts, we get

[ 22 Rleplogen) ply] doty
g T

= =3 ( Prgy £ ouly) -
SL




Therefore, we have

S{ g(Ao; f,‘z) [{A; +Xo) f(tZ)J dowly)

(6.6)

- -2 52[ € o, A, ; E,7) [ (87400 (B7+0) £(7)] do ()

- 3 f £y 9(3’7) dua(y)
4

provided that qf is a four-times continuously differentiable function
on S& . Thus, by combination of (6.3) and (6.6), we have for {e€ cvrR)
! 2n+ .
£(€) = go i S{ £00) B (€v) do () (6.7)

. -2) S{ C A, A, £ [ (A74A) (8753 Fo Y ot

—

More generally, by successive integration by parts we obtain in connection
with the definition of & (A, ... A, . ¥ ») and the formla (5.13)
the integral formula:

et £  bea fixed point of the unit sphere S0 . let £ hea

Let
(2n + 2) - times continuously differentiable function on SZ& . Then
.5 2 .
£/€) - 2 &ff/;) RIE g doly) (6.8) J

. /. PR et f ?/,\0’ Ny F;‘/)[(A;r)e\, . (-f‘.;#,\m§ #_‘/7_y da/;),
N ¢/ 9
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Inserting the addition theorem of spherical harmorics into the first term
of the right hand side we find
Ny dnsga

£(€) = 2_ 2:; Sn,} ({)S{f@) Sl.," (9) dw (y) (6.9)

o

+ (—#)’"”S{ €y As B [IO700) (85400 20y)) dls ).

This formula gives a comparison between the m-th partiail sum of the ortho-

gonal expansion of { into spherical harmonics and the functional value
of { taken at the point ¢ g S  respectively(with explicit

knowledge of the remainder term),

The formula (6.9) may be considered as the theoretical background for
problems of interpolation and best approximation by spherical spiines. In
order to See this we have to modify our integral formula (6.9) using Green's
function

CA A A, )
(6.10)

- [ Clha, o A €, 8) G0 du, i) do/8)
l

L 2
with respect to the operator (A" + Ag) . . -(4'*/\,,‘\) and the

oarameter £ e S

Inserting (5.10) into (6.10) we obtain as bilinear expansion

2 26+ 1
L 2 N4 - ~
D . P = (& =z ——. PP )
A TS Y ) (4 -

! / or s w51 ) ) le=nnea {’x&z-"o)z»..//\e') R Lf ‘

)

Hence, 1% is opbvious that

o e, Foy) (e.12°

.~

9_3;\ LF(A-+ Y e (A% f‘!f:_'(,\c'. Chms f’7)J- ‘
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Summarizing our results we therefore obtain the theorem:

Let ¥  bea fixed point of SC . Suppose that £ isa
(2m + 2) - times continuously differentiable function defined on §2 .
Then
£ (€) (6.13)
m e
neo =4 V2
27, . 2 E DA (LA Eo)| o (5).
+ (#) /Azu,,)... (4543, LA, A 5,7)[ A (B Al da
I

o]
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7. THE DIFFERENTIAL EQUATION  (a®) £ = (&%A)..(8%1)f = g

Let S be an element of class .. of the general form

s
5(7) = i Z Cm} Sn,}(Z)- (7.%)

=0 J'.-A

Then, observing the differential equation

(4] +4.) S, (y) = 0 (7.2)

Ll
o

for »n "t and for all 7 552, we have

(A;)m Sin) = (A;+/\°)... (A'Z+Am) S(y) (7.3)
[as} ne+a - -
B E e, (grad @) S0
= Q
for all 7 € Q .

Jn the other hand, it can be deduced from (6.13) that any solution
S ¢ C(-'v"‘ +2) ¢ L ) of the homogeneous differential equation

(Ay*+A,) - .. (8%+2,.)S(7) = 0 (7.4)

is reprecentabie in the form

T T iy T T R AP R AP . 1y
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with coefficients Cn,; given by \

c, = f Sly) S”'} (7) dwiy). (7.6)
S

Yol

But this means that J"m is the null space of the operator

@A) . = (AT4A) L (8%, (7.7)

(i

The integral formula (6.13) will be used now tc discuss the general
differential problem

0k Tt -, A A W Y o KW 10023

(85+26) « -+ (B3 +AR) £(2) = g(p) (7.8)

for 'Zégz and gé C(\Q).

From Green's surface identity it follows that

jzf [(A;* Ag) - - . (A;+/\m) 4’(7)] Sty) deo (7.9)

- f [(4‘;¢,\°) ... (4‘2' +A,) S(?)] £ly) de
St

= O

for 211 elements S belonging to pm_ . [t is clear that any function
S e J?w_ can be added to ﬁ without changing the differential equation
.8}, However, if we require that £ is orthogonal to the null space of
(% + X)) - - . (A% +X_ ). then the differential equation is uniquely

~3

’
A

sotvable:
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Let ¢ be a continuous function QD_Q orthogonal to V3, , i.e.

—

~

—

o

~—
e s

[ ¢t Sajl9) ds = O
&

for n =0, ... , m; j: A

, , e, e,

’

Then the function £ given by

+(%) = (- f;)m+45{*§(rlo,~-,lm; §v) 90v) do(y) (7.11)

regresents the only (2m + 2) - times continuously differentiable solution
of tne differential equation (7.8) whichis orthogonal to 7*21

A AT T ey i TR [ ST 9

For integers #»< = -1  the bilinear expansion

;
5

(‘/—7{')’"2__—_ R+ /P(;7}

Cldo . Ay - €
Fhe, ) A €,5) komet (Ag=-2)e(he-Am) &

is apbsolutely and uniformly convergent on the unit sphere 5& . Inter-
changing sum and integral we therefore obtain

. (=™ = 2k +1 ~ o
£ = in) K (E v) dw (v
flE) “r kgﬁ (Ag=Ao) - o ( Ag=A,) 5{% 0§ da

as unique solution of the differentiai equation (7.8). -




8.

THE HILBERT SPACE

In the class

Z (2m+2) (Q)

2
C?( e )[52) of all (2m + 2) - times continuously

differentiable functions on the sphere 2

we introduce the inner product

(4 9

(/% J 25, () o)y 222 5{ 30 S, () 2)

(8.1) “

m
> 2

L LT ,/"“

. (&r)maS{ﬁA;”")m(A;MM) 2o 853 (B5#A0) 9 0] s

2 2)
The space CEmTE 82 )

is a non-complete inner product space.
the abbreviation

equipped with the inner product (-,-)”1
For the sake of simplicity we use

”
(2) ‘
Km (?, 7) = n_?o pﬂ (;Z) + g (Aol"'//\m,' ;/7) . (8.:.)
The kernel K, (€, ») admits the series expansion
oo 244
K, (&y) = ';’ JZ YW (¢) Yoo (7)) (8.3)
where the functions Y;.} are defined as follows
b é; . n=0, .., m
2n+1 Mid JF A, tnea ﬁ
.= (8.4}
iy
m+ 4
(—‘ﬁ'ﬂ') i n- """”'y”‘*l’.._
//\,1‘)‘,)...(,\"—/\”\\ g } = 1, . L 2nsa
{
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K. (€, 'Z) has the representation of an isotropic covariance function
on the unit sphere 2 { with respect to Legendre polynomials). It is
clear that K, (f,z) is symmetric in the arguments g—" and 7 :
K (E,97) = Ko (7, ;’} . By the Hecke formula we have !

f 7'71(5’-7} S‘«) () c{o/;) - T Sh,(} (€) d:llz (8.6) ;

<3 Znt4

o} n % R ¥

W

s S",', (;) n =R

2+

Consequently, an easy calculation shows that

( £, K. (E,").. (8.7)

 ZnNeA

=2 2 S (¢ S{f(?) Sa, (p) d3(7)

nzo J'a»v
. 2m4
(G A ea) o (8503, 55 e o B JI650 . (B300, 30 sty
St

2ut this means that

) = (£, K, (€, ) (3.8}

-\

N , (2m+2) . ) o~
for every function £ e C (&) and every point 5’—“ € G

b4

Y

K /€, #2) s a "rep-oducing kerrei" in
However, the kernel K, (¢,») itself dues not beiong to
a function of 4 for fixed &  {or as a function of & for fixed & ..

cErrt v2) N
C " /\)(4/'.

R
C (I +d) / ,L\} -

witn

. P S %)
And tnat is the reason why we nave to compiete our space (772 (L2)
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respect to the topology induced by (-, )

”m

(2 2)
Let FHOTTTE(SL)
V1 functions £ satisfying

denote the space of

(4D, = 5 24, < oo

nzo j‘=4

—
1)
=

r

K (€,7) = 2 B(§0) + GV, ., A, €,5)

neo

(2 +2)
the reproducing kernel for the Hilbert space H (82,

e..

is
i,

(1) For each fixed ¥e $Z, K., (€,7) considered as func

0

(8.9)

tion

of ¥, isin A IV 52).

(1) For every function

f e 8¢ the reproducing preperty

{/3:’) = ( {f, K., (gl ))m

is valid.
The system {Y } is a Hilbert basis in #
—_— "y n=0,4, —_——— -

J = 41, . ”':»’l+'4
NOTE: For the case m = 0 see Freeden (1978/1980) and Krarup {1979).

In the sequel we shall analyze in detai} that a proper abstract
satting for the problems of interpolation by spherical splines will be

{ € X (2m 48y (7 ) and every poi

nt

limv-z)/JZ\
/.
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provided by the niibert space & 27 () under consideration.

i 2 ) \
For that purpose, we have to prove first that ¥ (2m+2 (S )
a niipert function space of continuous functions on the unit sphere.

et £ e an element of  F 2™t (S2) . hen, by
Schwarz's inequality, we get with a suitable positive constant

C.. = K, (€,¥) dependent onm

[£(¢)] = G, /(£ 4. (8.12)

unitormly with respect to all points 3—" € 52. . Furthermore, there exists
a sequence [ £} of elements 7, in £ () with
fo  —— # ( in the sense of the norm (o) Y ).

Therefore, in connection with (8.12), we obtain

}’fh(?) - {n (g), = C,. /?‘fh'fn tfn‘f-Jm (8.13)

uniformly with respect to all lf € 52 . But this implies that
{k { f) — f/;:’) uniformly with respect to g’ € 52
Consecuently, { is a continuous function on the sphere Se .
2het2) X . T
The Hilbert space ozf (e (Q) is naturally equipped with
the (Sobolev-like) semi-inner product < - > defined by

l4

‘

< 43> = (ﬁ?)m;/ /A;«A,)...(A;u,)f(;y[m;u.)...(A;u.,,‘)?/,)da (8.14)

corresponding to the semi-norm

P
[#3]
e
w

-

ms A / - -
V48, - (&) /({I(Azuo)...(azu,.) £ dr
o

~_~

is




where (4%), @ (A% N,)...(8"+),) ‘s to be interpreted in the
distributional sense.

The null space of the semi-norm | 'l"1 = <>, s known to be
simply the linear space j?“ of dimension M = (1 +4)%,

It should be noted that the norm may be physically interpreted (at
least for m = 0 ) as the bending energy of a {thin) membrane
spanned wholly over the unit sphere 52 ’ /ﬁ denotes the deflection
normal to the rest position of course to be spherical. This model is
suggested by the classical interpretation of the integral

b
[ 2001* ax

Q

as the potential energy of a statically deflected thin beam which indeed
is proportional to the integral taken over the square of the (linearized)
curvature of the elastica of the beam (cf. Freeden (1981b)).

We summarize our results as follows: The (semi-normed) space
F (EmtH(SL)  defined by (8.9) and(8.15) is a semi-Hilbert space of
continuous functionson the sphere S

7




38

Lim+2)
9. THE HILBERT SPACE X ™"* ()

o

Let », , .., 7, be a fundamental system of order m onfl. Then
there exists a unique S € P,,L satisfying
S(Yg) = YQ ’ k = 4!"';"’1 (9.1)

for any prescribed (real) scalars y, , - - , vy, . For, as function of
ij S is representable in the form
/
M dnga
S = 2 <. S v
(7) ,.;.,ju g Sny (7). (9.2)
Substitution with v = Vo , R =4, ..., M, gives M linear
equations in these M coefficients ¢, ,
pu
L . S -
n=o J'.-q g "’J /74) >/,,
{9.3)
c,.. S -
r‘t—’—o Py ”’.I‘ a2¥ (7H) - )/M

The linear equations are uniquely solvable, since their matrix {cf. (4
is assumed to be of full rank for a fundamental system of order m.

Hence, given a fundamental system % .. . ,+»  of order mon

then there are determined uniquely M linearly independent elements of 'it
- -y
2, , .. . , L. such that
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Wi 2ne4q 3
307, = EJ-,4 Crj “ni (7.) = din (9.4)
i.e.
34 (74) = 1 I 34 {7.:,) = 0 [} s ! 8' (7"1) = Q
3'2- (74) = 0 / 82 (72.) =1 f : ¢ * 13 3.2 {7M) =0
3"1 (74) =0 ’ 3M(?‘!'> =0 ! ot ¢ ! 8"1 (?H)= 1.
For any S € pm we have
~M
S(y) = ‘22;4 Sly,) B, () (9.5)
as the (uniquely determined) «7,3" - interpolant of S on the point system
74/ ot/ 7,A-1
For any choice of (real) values Ya 0 o, Ve o the element
M
Sl = Iy Bty (9.6)

is the unique solution of the interpolation problem S 77.) = ¥, ,
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the functions 3:‘. given by

m on SZ we have to solve the linear system

/50.4 (74) L. Sm,q {74) Sm,lmwi (?4) C°,4

T ——
.

1

\\\‘-—‘..___

Son (7,) - - - Sm,,, (7). S amea (20)

_—

The polynomials B,, ... ,3,,, of the ciass 5?,‘ are called the
fundamental polynomials for pointwise jnterpolation. In order to evaluate

B.n) = 2= G, S.. (%
© ¢ n=o /=1 e ¢ 4
corresponding to a prescribed fundamental system 4 ... , 74

ez
LA Y]

of order




———
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i.e. the matrix
1 \
Co,, Cg:' \
. \
-y .
e A ,;
' /
!
{
1 M !
™ 2ngea L2 L T /
is equal to
™M -t Myt V=T
(« ) - ((o™) ) (9.7)
(( 1 . transposed matrix).
2 )
forevery £ € X700,

,Zf (7) = /,Z:T £/v0) By (7)

is called the (generalized) Lagrange form. The mapping

; - ) - ) R \
/6 # (Bres® (/Jd) — ~Qm N ‘é,f

1
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. vs . Z 2n+2) . ",
is a Tinear projector of (52) with range J;, and kernel

KL < (e XD $lg) =0 k-a M) (o)

Each function £ € A S7) can be represented uniquely
in the form

f(7) = 4/2) + L ly) (9.10)

(2ms 2)
where £, is of class & ( S2)  and 4, and é'; are

orthogonal in the sense of the inner product < - e >

<Fo, &> (9.11)

(#);mjz/[m;uc) o (D7D, 4, (7][(4;+,\°) (B4, G 1y)] A

Equipped with the semi-norm
' . lm = ‘/ < - , >M
the linear space ?(;”""”/.52) is a Hilbert space of continuous functions on

the unit sphere ..SZ . In view of the reproducing property of the
kernel K, (£v) in K ™** /1 (2) it is easy to see that




Cte GV A D,

(9.12)

- <‘foo ﬁ ﬁ(z)(/\o,"'//\m/ 5’7") 3" >M

3
S

M

- < o, B (%) G, A g ) O,

-~

X

+ < fo , -t Z_— 31;(?) f(z)/"o,~‘-,/{m;7n/74)3n>m

n=g

- { (%)

(2n+ ) .
for every function :fo e K o (52> and every point

¥ € $e.

Moreover, the kernel

K (§.9)

Ul

gw(/\ol,,.,Am/. €, v) (9.13)

M
- Eq ‘g(‘)(’lO/"'/Am; F/?é)gk{?)

- E_ B, (€) 7(:;(,10,.‘.,1,"/. e ) ) [
A
/ 2) N
* kz;_: ,%:, \3‘2‘5) ? /,lol t ’}vu/"/t/z') ‘6,!(‘?/
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belongs to the space Z’o("“‘*“ (52).
Therefore, our considerations can be summarized as follows:
(2uce8)
The linear space 7{0 /07.) defined in (9.9) is equipped

with the norm I 8o = /<75, a Hilvert space. & ¥ /1 2)
possesses the reproducing kernel (9.13).
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10. OPTIMAL INTERPOLATION PROBLEM !

The basic problem of spherical interpolation shall be repeated now
explicitly as follows:
- given an admissible system % _, ... , 7, of points of the unit
sphere Y and a set 'y , . - -, ¥, of real scalars,
- construct a function § : S8 — R belonging to the linear

——m——

variety

N {{én{”m”)ﬂ>)fWﬂ =y, ke A N

N / v

2
of all interpolants in A At ( $2) to the data.

To assure uniqueness of this problem, additional information is clearly
necessary. In problems of determining geodetic or geophysical guantities
some restrictions on smoothness and polynomial precision are required. This
can be achjeved by restricting the set of interpolants using an (energy)
semi-norm. An interpolant minimizing such a semi-norm can be regarded as the

"smoothest” solution. In this connection the semi-norm [ - l'n represents

a natural setting as explained in our introduction.

From the definition of | . ) me It is clear that

&)
3
-

1

m (;%)mé/}(zl;»t/\o) L (4%342,) B, (?)/‘d(, (19.2)

= 0

enca, the minimization problem  ( N > M)

Is1 T Y

te v,

A AN R AN IR J




is equivalent to the problem
bs.h, = £ VEl,
{$ vy

Ve = {f.e H0 Q) | ﬁ,(?})‘&/}’f’*ﬂ'“l’\/}

N

. (10.4)

Remark; The case N = M reduces to strict interpolation by spherical

harmonics.

From Chapter 9 we know that Km (€ i 7) is the reproducing
kernei of # (o"“‘*‘) (52) . Thus, for ¥, 6 » € e,

< Ko(8,:), Kol-,92)> (10.5)

(448

= (f_w)zm,;{[(a;uo)... (8%+A) K:(ﬁ;’)}[(t\;’ﬂg---m}um) K:((Iﬂ] do (E)

- Kml(E,5).

But this means that the matrix

°© R hi
/ /("‘ (7H+4/ 7H+4> " (7!“*4 / 7N) \
" l (10.6)
6, = t I
\ K':(‘ZNI 7H+4) ce Ky, 7w) /
is symmetric and positive definite, viz. as Gram matrix of the {Tinearly
independent) functions K2 (7., 7, -+ -, Km0, 2)-
These results now can be used to prove the main theorem:
Suppose that (7, .y , ..., (Zw, ) 3re prescribea data points
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corresponding to an admissible system 4~ , ..., #, of order m on
the unit sphere SC . Then, the function s e &“™Q) given by
with
y M
( =
s 7) E In 3»1 (Z') (10.8)
and
N
So (%) = 2 a K°f )
° 7 b=M+a < ™ 7‘6/7 (10.9)

is the only solution of the interpolation problem

bsl = nf 1g)

m fe v, o

s 2
(=) 5{/(A;+/\°).. (A%, sF do
. 4 \Imq+g
- ind ()T [ cateay L (A Hol ds,
{€Vy Q
where E_"E (E_f_ﬁ_c_ien_t_s an+4 [ | O'N E.‘E_E_fl

;
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the linear equations

N
-} M
2;;_; a Ko (IZh.IZ},) = }; - 2_; Y. Bn(‘?&) (10.10)

(}: M+/fl .. .,/\/}_

Proof. (Uniqueness) Suppose that s o is given in the form (10.9).
Then S, is uniquely determined, since the linear equations {10.10)
admit one and only one solution (Q.,. , ., QN) because of the positive
definiteness of (10.6).

(Minimum property) I n order to prove the minimum property of S

in V2 with respect to § - 'M we consider the difference <,

of s, and any function £, € My :

T = So - Ao (10.11)

Of course, we have d“(?a) = O for kR =M+a, .. N,
Hence, by virtue of the reproducing property of K J(£5) in H LA, 2
it follows that

P ARMEL Ty . ‘
(g) S{[(Az+,\°)... (Azu,,J do(?)]ﬁt&;ﬂo)_,, (A';,L,\m)%(?gc[g (10.12)

_ 2 242 ad .
= (#-rr ) J_ c?kJ&/[(47+,k°)_., (4;+A,,,) do(?)][( 2o .. (a3 M) K (Zm,/}“fc/o

&= tea

) = 0O
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Therefore it is obvious that

4 \Im# -
(=) Q/I(A;w\,) o (B700) £l s () (10.13)
= (ﬁ;)zm‘;{ I(A;Ho) . (A;+/\m) (s.09) = dol2))] 2 dw(v)

2me
(Z)57 | canen) oo (A7400) S.tp)]? doly)
St

S E)T ) aseay (AR A dalp)]® d o)
\Y)

This shows that

(ﬁ-_:r)zmaﬂ{ /(A;+Ac) e (4‘;+/\M> 50(7)}161:.3(?)
=< (q_j_r)-?*\dlg{ I(A:*f'/\o) C- (A;‘F’\m\ {o(?)}l dd[y)

for all :,tf"3 € V,f / where equality holds if and only if &, = 0,
i.e. fo = S,. 3

For later use we write the matrix

K2 (s tmis) o oo K (te 7))

/
o !
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in cecomposed form. Observing the explicit representation of
(see {(9.13)) we obtain

4. .
‘5'(1) (/\o,..., >\m/' 7""4!7/-14.4) cew g, ("501"'//‘.“,' Z‘lﬁl,"ﬂ>\

\
|
|

N _ !
o ’ (10.14)
|
\\ im(/\o, A s 7»1,»,) - 5("/A°/-'~;Am,’7~,7~)
/ 5{‘)(,\0"“,’\“‘;7"'"74) ‘ﬁma"'“' Rne; Oomat Ppy \\\ / \‘5"/7&144) ... 2, [0 ]
o |
1 |
- : c .
| | |
\ . / P o
\ . ! J'
\\ 3 (o, s fantty) - - ; C ey P buy 70, k' B, (7’1") N 3H /(7,\/)}
3" (7""‘4) Tt 3"(7’%1)\ / ‘?“’/Ao""/ ’\M / 7#44/74) .. 5(1’///40,..7 ,\“,;7”, 74/\' ‘.
L '
| L
" i
: b
! .o
': i

|8, 7 “ ?d’l‘ LA s ;
V3 770) - Bl | \\ G Ao e, T g1 e G (o, A Py
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’ 3, (7»1,».,) 3,1(7{,1"\‘\ ‘3'0-)(,\0,...,\,,‘;74,74) ‘.- 5(1)(/\0,...,,\,,‘.7‘,7”) \

|

+

TR

oo o 5
| |
o . H '| !
f ) .

i .
L g !
\? (/\o,“'lk"‘/.7"l74) ‘e ;(U{Ao,.-./x.‘;?”,?hJ ‘ 8”(7"*) .. 3”(7"1)}

B, (2) - 3"(7,\,)

According to the definition of the fundamental functions B,, ---. B
of the class T we obtain

/3,(7,"4) e B (70,) (10.15)

f

|
\34 (7~) RN 3#1(7:\/)/

™ one
> .t s > S .
nZ’c» S & 5"$(7~¢ ) wee JoT Coy Omi (Zrnas)

!
| |
! !

) !
W ey dnta

"y ~ ;
\Z,ch; Spln) - - - = z—fc‘g'/ﬂ/
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[ Sarltns) -+ Swawen(7.) /c;

i
I
.2

\ So,q (7~) s . Sm,zm-m (7~)/ \cn;,:.m

\
The matrix
-
= o |
| |
I
= : §
/ c“‘?« [ ~ !
| -~ !
- |
T4
\ C ‘M /
, 8 .
~,empy C‘“’a‘““!

is known from (9.7) to be equal to (oc’") - €

Conseauently,

/ 3v (7;1¢4} s ‘ $H (7H-M)

|
3‘\31(7~) Y BM(‘[N)/

(10.16)



r_______——-————"""'""—k —
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Som (7H+4> s S"’-’-"'"(‘Z"‘f‘)\

|
|
\

5044( Yy - 50«,2:«44 (714)
\50,4(7/\/) < S"',J-M+4(7N) i \ 7"'
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11. SPLINE FUNCTIONS

The consideration given in Chapter 10 now leads us to the definition
of a spnerical spline with respect to an admissiole system of orc.r w on

$e

Let »,,..., 7, be an admissible system of order m on the unit sphere

S . Then any function S € & ™72 Q) of the form

(10.7)

MM N

—_ (=)
st = )y Baly) + 2L ay K2 (g7

rn=q =pmyq (11-1)
with arbitrarily given reals y , .. .,6y and coefficients a_ ..., a,
is called a spherical spline function in A 2t () relative to
2101 T

The class of all spline functions s in A (2 (82} relative

to 4,,-.. ,7, s denoted by Jf,,(g,,...,glv).

The space f; (z,,...12,) is a N - dimensional linear subspace o<
2V () containing the class ij_ .

From Chapter 10 it is known that the following interpolation oroperty
is valid in A ™ (2)

Given £ € K@l 2) , then there exists a unique
glement s e S (y, ... v, satisfying

Sizgt = £(7) = v




| | - 7
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for k& = 4, ... AN - Denote this uniquely determined element

— I

of .7:/2“.../7”) EY. Sf.

)

By virtue of the definition of a spherical spline function
it is easy to show that the first integral relation

1 Im+2
(&) 5{ [(a7440) -+ A7+ A, #ipftae (11.2)
1 22 « -
= (;‘.‘,‘r) S{//A,f/\o) ce (A?+ /\m\)(f/‘Z)“S;(?))/zdb-’

e Ay Stz -
(s«-.r) f /(AZ+AG)... (A'zw.,\m) 5{(7)}2 ds
52

(2 +2)
holds for every /{ e XU (52).

(]

Moreover, it is easy to see that the second integral relation

(AR (L) (8540, (£ - st s

i -
i
S
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i+l
= (F) I e (e - )

F 4 \Eme2 - .
P 1007 e

+

holds for every f e K R“‘””AJZ) and every S¢ 7: ey o)
(cf. Freeden 198la).

a
In order to calculate an interpolating spline function
M n
= 5 + a K°/(.
S, (5) Z:;_,f’/yn) n(7) h:Z;—-f:d o M(&,?) (11.4)
we have to solve the linear equations
b .
a, (g ) = £(4.) - L VB, (o) 11.5)
e hres R im Z@,‘fa‘_) f/rf/ Py f(zt/ nl@/, ( /
(= H+1, -, N)

whose coefficient - matrix is symmetric and positive definite. Solving

the system (11.5) is tnerefore a most simple problem:

tne matrix can be
factorized by the well-known Cholesky procedure.

This can be carried
througn without any need for pivoting or scaling{cf. Cnapt. 13).
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12. APPROXIMATION OF LINEAR FUNCTIONALS

- et )
Let us consider linear functionals J o< l/fZ) —_ R nf
the following structure

. o
Jf = S{?(z) f(?)a/a + 2;4 bk f(fb)/ (12.1)

where the function g is assumed to be piecewise continuous on Q , the
weights b, ..., &, are real and the points &, ... g, lieon
S (d: positive integer).

Though this is not the most general class of functionals that might be con-
sidered on the Hilbert space  # ¥™+*2 () it is adequate for most
purposes and applications. Obviously included as special cases are the

following:

(i)  rhe integral over _Q (cf. Freeuen (1978))

f £ly) do (12.1a)
\Y%

or any subdomain “? of .Q

j 9(r) £(p) A (12.1b)

¢

(ii) the orthogonal coefficients of a function If on $2 (cf. freeden
(1980/1981 a)}




. A

being required in connection with {Fourier) series expansions of a f

a function
into sphertcal harmonics

(i11) any functional value £(¥¢) , £ e 3

£(€) (12.1a)

(iv) any finite linear combination of functional values of .f at
prescribed points ¥,,. .., &, on S§¢  (cf. Freeden (198la))

a

b b, #(€) . (121e)

k=1

Jur purpose is to approximate a linear functional of the form (12.1) by a
linear combination L of the form

N__ M
-f - Z‘—ak['{(‘&) - Z 3&(711) W?ﬁ] ’ f12.2)
F=1

L2 =My

~
where 4 .. 4 is a given admissible system of order m on So

14 / N
The functional L is called exact for the degreem, if L S = J S

whenever S € JEi‘. The remainder, when L is used to approximate J
is a linear functional R defined by R = J- L .

k]

If the approximation

of J by L is exact for the degree m, then Rs = O whenever
5 e ..

Let 4 be a function of the space & ‘¥ P () given
in the form (9.10)

-~ -




) = Lig + £(p), (12.3)

3O

(2 +
and ﬂ is an element of & ¥ ).

[=]

where /é is of class

Then we first get

R

it
X)
N

+
R)
A

(12.4)

provided the approximation J by L 1is exact for the degree m. Moreover,
the reproducing property of <o ? ) ?) in 7(0(.:»1.:> (S5)
implies that

Lm+l

R, =(2) R, 5{ (&0 B0 G850 . (B A Ml d ()

& (I - -~ o . -
= (7)) JLen) o (A IR Kl B500) - (85 M) ] v ).

Observe: R is a bounded linear functional).

The notation ?5 means the linear functional R is applied to the ¥
. ; - : .
variable of ke (€, AZ) . The function K given by

Ky = @E K2(E, 7 /7652, (12.6)




is called the spherical Peano kernel of order m for the functional R.

Combining (12.4), (12,5) and (12.6) we therefore find in connection with (12.2;

RE =( ;’zr_}\""g[(a;uo)... (8544 ) KI5+ o). (B%A,) £, (pld= (12.7)

- (#)“‘Z[(A‘;)‘) (A'z'+ XM)K(LLS)[(A’:L'*/\J"'(A;* Au) 4 (‘z)] dw

with

Kly) = 7?? K2 (€7 (12.8)

= L Ka (5. - L K(Ey
N
I N 17 B S (AR

Applying the Cauchy - Schwarz inequality to the right hand side of (12.7) we
obtain

7 .L m+1 /? .
IR{l = (W,\ v/&{’ (41*/\03 cen (A;/r,\m) K(y,‘lzdw

(12.9)

//ng(A;+AJ SN (A;+Am) fﬁﬂ)zdo




e
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We note that the quantity

4 \2meg -
GRS = (TSI s eA) K ds (12.10)
St
depends on the nodes 7 , ..., », and on the operator R, but not
on the function fe F 2O,

Collecting our results we obtain the following a priori estimate:
iet J be a linear functional of the form (12.1) and let L  be any

approximation of the form (12.2), exact for the degree m. Then, for
each function £ € & *™*¥(Q)

- _4_""4 o ; °
10 - £l < (%) /(7572 2LL, L L) KIS

) /;fdm;uo) ce (A;+/\M*)z{_/z\{"'dw—.

The estimate (12.11) enables us to calculate the best-approximation

to J , i.e. the linear functional L of the form (12.2)
= :
L = a [ ’( -7
- . . 12.12
f &=prey & f 7‘1) 4§ B& (Zz) ‘f[a)j ( )
exact for the degree m, for which the quantity < K, K > o assumes

its minimum.

The minimum can be obtained by solving the uniquely determined
quadratic ogtimization problem




" NN
S L KUF ) =2 2 a, L KIS, 22 a,a Ky, 4

"™
RaMen NEMey gz ira

—_— mon, . ‘1

ro
y—
(9]

It is easy to see that the quadratic optimization problem becomes its

minimum if
v
//O /0o fro
z a r(m(?r, ) = ] K ( \ 12,14
R=pMeq J/ZQ ; ;,ZJ
for ‘j = M+, .. A . The linear equations {12.14), however, have
a unique solution in the coefficients & P 3 -

Mg ' N

Summarizing our results we obtain the thecrem:

a——

tet 7 be a linear functional on F i) o 00 of the
t

form {12.1). 3Suppose that (&@,,. , . . . ,E’N) is the solution of the
linear equations (12.14). Then, for each o & H “*™*¥ (23 | the

linear functional L given by

N

- ™
L4 = J_ Q, L £(7,) ~ 2 3,,(7»1\/ ?‘(‘gkﬁ
namM4a R=a 4
represents the best approximation to J (ir tne sense of the kg

estimate {12.9)).

The anproximation L o ;7 has as a posteriori estimate

S’



174 - L#]

—
V—
(3
—

2l
—

< (7SR k8-S 8 g ke

Y

' /7/./AE+,\°) (AR £ s ﬁ

The best approximation ("F - approximation" 1in the sense of Krarup (1979))

opens a new (non-statistical) perspective for geodetic purposes of nrediction:

to supplement the gravity information, which can be made at only a relatively

few points by determining further values of gravity at other points or to

compute best approximations of other quantities of gravity. Furthermore,

we have a priori information. 0
From a theoretical, but also from a practical point of view it is of

great interest that there is a close connection between interpolating

spline and best approximation. This can be explained as follows {for a

detailed proof see Freeden (198la),Reuter (1982)):

Given a function {4 € A ((2) . Denote by s, the
uniguely determined interpclating splire

'5,' = (n{f '3"‘1 (12.16) #

3¢,




to the linear variety

v, = { g€ XUUR)g(7) = vm fly) A N

J-

Then the best approximation L to J is also uniguely determined by ;
the property that L £ = Js p whenever £ & 2 QN i

In other words: there are two equivalent ways to compute the best
aporoximation L to 7

(i} solve the linear equations (12.14) (using Cholesky's factorization)

(ii) apply the functional J to the (optimal) interpolating spiine sz.

—

Remark: Approximation of integrals based on the idea of Weyl's law of uai-
form distribution can be found in Hlawka (1982).
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13. NUMERICAL METHOD

Using generaiized splires as e.g. proposed in Freeden (1981 a,b}(1982) and
Meissl (1981), one deals with functions lacking a local support. Hence the
normal equations are full and the size of the systems is limited in inter-
polation problems.

According to our considerations the data relative to various inter-
polation points now will be exploited in two steps based on a combination
cof well-known procedures in interpolation theory [cf. Davis (1963)),
viz. the Lagrange interpolation and the Newton representation theorem.
This is of great computational advantage as regards the number of data
and the numerical effort. The standard algorithms to be used in our
method (Cholesky's decomposition, forward substitution) are indeed very
economical and numerically stable.

The great benefit of the method proposed here, however, is that *-e
solution process can be formulated in a recursive way leading tc th
permanence property in spline interpolation problems. This will be

discussed now.

. . (2me+2)
As we have shown, the spherical spline € i (ﬂﬁ&)
that interpolates the data points (%,,% ), - - -,(Zn:¥) can be
represented in the form

™M N
@ B I ey, o

Nn=M+4

Assumed the points »_ ..., 7., form a fundamental system of order
1t on 5;1 the functions 13,, ., sz satisfy the property

B

n(’i'n

) = 4,

\
Uﬂh FEE SN )




plr = 2 plg) B (q).

Given Yo, - , YA

Pl = 2= y B.(y)

is the uniquely determined solution of the interpolation problem

plz,) = Yin

in the polynomial space 5;1.

The expression

M
rly) = :Z-_:_ P(7.) B, (4)

is called (generalized) Laorange

k

the function defined by

formula.

Kronecker symbol).

(13.4)

(13.5)

(13.6)
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As is well-known (cf. e.qg. Davis (1963)), the Lagrange formula has

one drawback, namely the lack of flexibility when passing from an inter-
polant to M data to an interpolant of more than M data. For instance, if
one desires to pass from the space ~21 to the space 52n_,4 by adiunction of
2m + 3 points, one has to determine an entirely new system of fundamental

polynomials that are not related in a simple fashion to the old set.

In the Newton representation, however, the increase of data can be
accomplished simply by adding of additional terms as described now.

Suppose that {7, .5} o - 4 2,... s a sequence of admissible
systems of order m on S¢

Then the {Gram) matrix

w2 ( °
7~1+4 f'ZHQ-A) L('“ (7M¢4 ! 7h+a)

st : - (13.7)

K2 °
lgad (7?14-0 f 7~4~> T K"" (7M+a ‘ ?M¢@)

is non-singular for each integer Q > 4.

Corresponding to the sequence we introduce the

{luralarne...

sequence { L of evaluation functionals defined bv

H*Q}Q:»y'z'..
LM:&Q{ = f(7h+0) , Q = 1,2, ..

Then. according to the biorthonormality theorem {(cf. Davis (1963), Theorem
2.6.1). there are determined uniquely two triangular systems of constants

b, %4 with b, % O such that 1f




and

we have

Mea

M2

b-

k:“" (2) = ?}14 I(v:(?HMIZ) +

L.

T

M

b.

mra

() =

68

b, L

M4 T Mea

b.!ﬂ Ln¢.' + b L

22 “He2

j(':(YH\y,' t ?)

l(': (?Hog [ Z)

é"':G (?:n--r) = OCRT

(13.8)
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The result of biorthogonalization can be formally expressed by means of

determinants
!
. ‘
Km( 7nv4 l?NM) ot l(:‘ (7"'4' 7"" . ) $
- : J‘ l
Lt |
Mo '6h¢&' L(O o :
# ~ | "~ (‘Zm)-h 7m4) o L('" (7'”&_4' 7'"}) {
LH +a co T L""'J ;
I

K ° °
™~ (7n¢417nm) T [(""(7"4‘}1 7’164)

. 4
hn+}(7) 'éa:*}‘q i

k!:v (7"*4'7"")") LR L*,O( )

™ 7"7 ’7#10‘} -4/l

Ko (g 7) s k:('7m<} g

0f great interest is that for the computation of the last determinant
only the points %.,., , - - -, V., 2re needed from our prescribed

admissible system of order m.

Consider a function { of the subspace spanned by the functions
7), 1.e. the set of all linear

kl':‘('fmn dT) l(’:/?*«Q'
combinations of the functions w s (y, 7)o, W (7'“0 )




{ € SPQH(K:\(7H04|?): Y l(:‘(z"'alz)).

Then

[}
flp) = 2 F(75,.) kmnl(7) (13.9 )

neaxs

The representation (13.9 ) is called {generalized) Newton formula.

9]

Remark: For the following considerations it will help to describe the
biorthonormality theorem of Newton type in the language of matrices.

Let ,3 and Yy designate the triangular matrices taken from the
coefficient scheme (13.8):

ﬂ = (b‘;,})tudl...

, Q&
hj“’l"‘ Ia
and
v o= Jiilia s @
J =4, -.,Q

Then it is characteristic for the biorthonormality theorem (cf. Davis
(1963), chapt. II, sect. 2.6) that

(1: unit matrix). This is equivalent to

e+
6~ - /g-*‘J;t
i . 113.10b;
-4 . - . < . N .
Mow . A is a lower triangular matrix with non-zero elements on its orin-

. -t . ) . . :
cipal diagonal and e is an upper triangular matrix. Since the matrix
G, Mt s positive definite and symmetric, the decompesition (13.14b) 1S
actually 2 u® g e - factorization, where 4~ 15 an upger trianqular

and ¢ is a positive diagonal matrix. Therefore, there exists a unijue

’ . |




upper triangular matrix
such that

This (uniquely defined) splitting of & e

Cholesky factorization

Qur purpose now is
with the flexibility of
tion process of optimal
recursive form.

As shown in Chapt.
interpolating spline to

(7,:%)
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with positive diagonal elements

T M+ Q
a~

G_MH+@ - (.c:wa)t .L.Mrwa
is known as the
{Cholesky decomposition) .

to combine the advantages of the Lagrange formula
the Newton formula. As a matter of fact, the solu-

spherical spline interpolation can be achieved in a

11, the problem of determining an {(optimal)
the data

bl Yug) (13.11)

is equivalent to the problem of finding the function se Z:(z”.“,7n a)

of the form

A Me®
s = 0
(y) Z v By o+ I W K27, 5) (13.12}
Q + o
to the vector a e K~ A% = (a, .., %.,,) satisfying

the linear equations
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M+a N
3"“ A Kl ;) = v - g % B, (7,) (13.13)

for } = M+, M+ Q

Using the notation (13.7) the linear equations can be rewritten in the

vectorial form

M+ Q ~
G, a = Yy (13.14)

t
~ Q -~ o~ ~ N .
where the vector y & I ' (}’)= (VHM Pt Ykeg ) 18
given by

o= % T 2y, By . (13.15)

Furthermore, setting for arbitrary but fixed # & \56,
(i RN 7 (22 _7‘4”‘ / 7) PECIERE I 7‘1*& 17/ L0.400

we are able to express the linear combination

MeQ

Z_ ak .'/(,: ('7g ) 7) (13.17

é=Me+,
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as scalar product

+ ~
a® K(y) - (13.18)

. Mo+ G
The (Q,Q) - matrix G m is positive definite and

symmetric. Thus, according to Cholesky's factorization theorem, tnere
exists a non-singular, upper triangular matrix t‘:: +a (with
positive diagonal elements) such that

M+Q M@yt M+Q
G = T T
N (T, %) N (13.19)
t . . .
( ( )7t transposed matrix). But this yields in connection with
(13.14)
MrQ -1~
a = ( ~ ) b4

(13.20}

Thus our expression (13.17) takes the form

t s mrQy- ! mMea— ¢
T
v / / rM /

£7/7).

\,
/

o




Using the abbreviations

yre RY, yT o= (ele)Ey

!

and, for each va € _\7./

~

Lre R &% = w7 Ky

we get

FETITe) T (wpee)TE R
= (y*)T  k%(y) .
Using coordinates
vy e R (v = (yar o Ve
R"(7) e RS (R2()€ = (RS2 s, .. . | £hgly)

this can he expressed as follows

Me@
Lo Q,
orrea

K (7 i)

(13.22)

(13.23;




75
The sum of the right hand side of the last formula represents a
formula of Newton type (for algorithmic details cf. e.g. Davis (1963),
Meinguet (1979)). Furthermore, the computation of )‘. ) b"/7) can be
organized, indeed, easily by forward substitution.

A

Summarizing our results we therefore obtain the following result:

Let Z,, ., 7, be2 fundamental system of order m on the
unit sphere S& . Then each spline functio: < € 1, (v, .

-y 7,‘”&)
of the form (13.12) can be represented in the form
~ &
. L w p
S(?) = Z Y, 3,,1(7) + Z Y M ¢7), (13.24)
n=1 W ¢
- G "t Y » .
where the vector v = € W / (y /=1 Yoveq 1% - /yrna) 1s the
solution of the linear system
M+Q ¢ - _
(7, yo = (13.25)

and, for each but fixed » e &, &k%(y) € 7/?Q,

L : . - .
(& /47)\ = (&5 (), .. ma(‘ﬂ) is the solution of the linear
cystem
M+ QN t » ~ - 3
(T, R (y) = Wiy). (13.26) %
' + i
Herein T : * &, ( 7_-'\«: +Q ) - are the uniquely determired ]
PR T |
Cholesky - factors of s MR 1.e.
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T M*Q is an upper triangular. !
n o AS an upper g

+
a MeQ n+Q
&t = (T[T

i
~

Tne first sum of the right hand side of (13.24) is a sum of
Lagrange type, while the second sum is of Newton type.

Remark: The Cholesky factorization is one of the best direct methods
for solving linear systems with a positive definite., symmetric matrix.
The computer implementation of Cholesky's decomposition is simple.

Economy of storage can be achieved by working only with a linear array

of 2(Q +# 1)/2 elements consisting initially of the upper triangle of
& M+
~

which is later overwritten with T ."*¢ . Tnis

met10d 15 also economical as regards the number of arithmetic operations.

As is well-known, at most Q square roots and approximately <Q3/'6' operations
(1 operation = ! multiplication + 1 addition) are required, to be compared
with atort @3/ 3  operations for the well-known scheme of Banachiewicz.

For the computational procedures. well-known routines (in double
cracision, 1Y necessary) are available (cf. e.g. Wilkinson - Reinsch (1971)}.

—




—_——
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The spline of the form (13.24) possesses the permanence property, i.e.

the transition from the spline s *®) o £ 7, .. » ) interpolating

the data points (7, v,) , e o il Pt Ymag) O the spline
SM*@ra ¢ Flv,, .. Zmeq..) interpolating the data points

(Z0i5,) , « -+, (Zregeni Ymeqsa) NECESSitates merely the addition of one more

term to the expansion of s “*&) | a)] the terms obtained formerly re-

maining unchanged:

] Q4
(M + G 4~ L] »
KY /! -
- (m+Q) - [ J \
S ‘/‘Z) * yH+Q+4 émv—ﬂ-‘a /?'( )

The price to be paid is the change of the basis system for the spherical
harmonics of order « m and the biorthonormalization process.

The reasons for the convenience of the permanence property are the

following:

(i) by virtue of the Cholesky - decomposition of the matrix

egrre = (vro2)* T the i-th row of
T depends only on *le rows 4 < C  of the matrix
6': + Q

k'/g} are computed by forward

. L J
(ii) the quantities y
substitution.

/
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From an algorithmic point of view, the transition from tne spline

M Q
S(M*Q)(k) - ; A 3” {?> t VZ—_; ylud' /2#:3 (?)

interpoiating the data points

(74'>/A> ! ° - * / (7MvQ / \/H+Q\)

to the spliine

(MTQ?T) M G+T
o Bty v oyt kS ()
= J=a 'J Mftf

‘nterpolating the data points

ooy - o -, (7,

A
QT X;4G+T)

(T:positive integer; necessitates merely the computation of the addizional

. MeD T , : B , .
term. in &, &7 and the continuation of the Cholesky factorization
s o~ P QA He@+T

from &, to <, .

According to the diorthonormaiization process, exclusively forward
substitution (cf. (13.25), (13.26)) is required for the calculation of

the sum
Q+T
S . - »
Z“— >’H+' kN . (7) .
=R 4 4
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Remark: Generalizations to heterogeneous data (in form of (bounded)
linear functionals) will be given in Reuter (1982) and Freeden/Reuter (1982).

* Analogous considerations establish the permanence property in best

approximation problems. -

Remark:

In modified form the interpolation method analyzed here has been
oroposed first by Meinguet (1979) in connection with the Beppo - Lavi
space & “™(MR?) of continuous linear functionals defined on the
class of infinitely differentiable functions with compact supgport in

9 - dimensional fuclidean space 7R 7, for which all the partial
derivatives

e G) = e

{in the distributional sense) of total order m are square - integrable
in  MRY . Inthiscase, #™(RY) s naturally equipped with
the semi-inner product corresponding to the norm

3 Ca] L
{ z f f ,B Z, f/x)/-l dt'/'x)} )

=] -

L2

a1

3
f
[
a
o
)
x

{d¥: volume element)

wnere syvery partial derivative is to be interpreted in the distributional

sense. ~




14. COMPUTATIONAL ASPECTS

The results developed in this paper give rise to the following

algorithm:
Step 1l: compute the symmetric matrix (N = M + Q)

/5“)()0/'“:’\01; 74/74) R ;m('l°f“'/""‘f7q/7~)\
!

f

L

\$ e s zr) e E e iz

Step 2. print the matrix

/ So"’ (74) cot e 5°M (7N> \
/:' S’-’m (74) e 54’1. (?N) \
‘! S«,:‘, (74) o e . S,,J (7/\/) \
! |
| ;
| [
'- l
. i |
‘g S (7.) .o S (20) f
L :
l\ SM’Z,,,” {z) . . . 5‘",3."(44 (‘ZN)I/
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Step 3: compute the matrix

B"(?H") P 3“(7H)

B (Tn) - B (7y)

-1
50.4 (74) D S°M (7H) S°" (7"1") e c o sor"(yN) \\

m%.,—._. —— —— it = bt

.
. . . i

sm'lm+4 (71 ) T S:“‘/-!m»q {71'1) S’“'2H¢4 (an) cte Sm,Zmn (7/\/}/

by solving the linear system

S ( oS,
A 74) ) A (?M\ B‘,(?N*‘) oL R (7~)

LYY (74 ) ‘e Sm,zmﬁ (7,4)

3?1 (7M+1) R BH (7N)

- | X |
Voot o
Sm,zmm (7M+4) T S"',l"'*" (7"’)/

Step 4: compute the symmetric matrix

PRSI

/ Km (?M+4/7H+‘4) o K:(?HHer)\
5" ' '

~

\ Ke <l \ ]
m(‘Z’M/’ZH‘A) ot [‘m “’vrv, ‘/N}/l

where kx: (7¢'7j) is given by (10.14)
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Q (z)
Km ( 7“?}-) = ‘5 [/\o, "'IAM/' Z'/?!>

~

- @ ,
gz.; ? {"0,'”/’\"‘,‘ £/7k)84(7/)

M
_ B ' <)
&254 2 (7:) 5 [’\"r"‘/’\m/' 7&/4)

+ 2= :B;/?L) 5(2)/)‘,,.../‘../.7‘,.74)3/@)

"4 nxy

Step 5: Cholesky - factorization of the matrix (K:\<Z;

- ‘73;))“H¢A...
}-*‘ H«MI,...I,

z2

M M M
Step 6: determine the vector y qgiven by
r}:« M
Men = >/H+4 E >/n 3"! (‘7"*4>
~ : fad ]
Yn = Y T 2 v B () |
=

Step 7: solve the linear system (forward substitution) {

. , A '@ . .
Step 8: cnoose the peint 7 € JC . for which tne interpoiating

spline nas Lo be computed




A
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Step 9: compute the vector B, (:8(2))t= (34{2) e ,BH(7)),
by solving the Tinear system

Som (Z) « e e s..« (7H§ 3‘ (7) 0,4 (7)
Sm,zmﬂ (74) L S‘W Ay (7n) 3'1 (7) sm,znm‘ (‘Z)
Step10: compute the vector ;?(’7) given by

~ t °
(K[?)) = ([(m (7}44.4,7) Pty K: /71\/, ?))

Step 11: solve the linear system (forward substitution)
(z2)C R () = Ky
M 7) = K7

Step 12: compute the interpolating spiine s of the form (13.24) at the
point g e L2

0

Step 13: continue with Step 8

REMARK: The matrix

(s""(m R 2 B S

|

\ 'Sm.2w+4(74\) M S"',lnﬂ-v(?H)

is not used anywhere in our algorithm.
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15. A SIMPLE EXAMPLE

We consider the potential of thetburiedimass point

4
w(y) = TR re8 yt=(0,0,09), (15.1)

¥4

Our aim is to approximate u by a spherical spline function s
interpolating in given paints 7,0 - - 7 of the unit sphere.
We chose 62 points generated by regular polyhedra

B(O,%1,21), B(%1,0,%1), B(27,:1,0},
I y(*8,%1,0), Y(0,2B,%1), y(271,0,28), y(£1,21,+1),
(1'1'0’0)' (Oli“llo)l (OIOI:T)I

where T, B are given by

S S E2% WE I S DAV PR T PAVE
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We assume polynomial precision up tom = 4,

20*

20°

80°

In the following we have used two times eight additional nodes to eliminate
the derivatives between the interpolating spline and the function u in a

local area around the north pole.

b 3 X
X x x X X
X
0O oO
oo
n] ja]
20 X X X x x p7- 4
8] [=]
o o
Oo oO
X X X x
x g x
(+0.2500),
T
< (+0.3536,
(x0.1721,
7

{t0.0713,

Figure 2 illustrates the distri-
bution of the points of the
northern hemisphere (projected into
the equatorial plane).

"x" denotes the points of 7; ,
while "o" and

Figure 1 gives a graphical impression
of the accuracy for a meridian on

the northern hemisphere passing
through the north pole.

nodes of 7;

+0.2500,
+0.3536,

$0.0713,

*0.1721,

0.9354)

0.8660)

0.9825)

0.9825)

respectively.
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For comparison Figure 3 shows the graph of the interpolating spline with
respect to the 70 points of 5: v 9: , while Figure 4 is based on all
78 points. !
]
!
f,s 1 f'su
1
< s
]
4 < ,
80° 20°* 20° 80° - 80° 20° 20° ao'—v
Figure 3 Figure 4

[t turns out that we get an acceptable approximation in the neighborhood
of the north pole avoiding a deterioration of the accuracy in ail other
parts of the northern hemisphere.

Unfortunately it appears that the Green function (i, .. A, ¥ 0/
with respect to the operator Oﬁ‘Xi cannot be expressed by an elementary
function. Thus the Green function has to be replaced by an appropriate
expression which is convenient for computational purposes.

In our example, satisfactory results can be achieved based on finijte
partial sums of the bilinear expansion (6.11).

Other suggestions for replacing Green's (kernel) functions by closed

torms convenient for computation will be discussed in Reuter {1932) anc
Freeden/Reuter (1982).
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